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For example, suppose that four 32K-byte SRAMs are added to the middle memory area, beginning at location
80000H and ending at location 9FFFFH with no wait states. To program the middle memory selection lines for this
area of memory, we place the leftmost seven address bits in register AGH, with bits 8-3 containing logic 0s, and the
rightmost three bits containing the ready control bits. For this example, register A6H is loaded with 8004H. Register
AB8H is programmed with a 1F44H, assuming that EX = 0 and MS = 1 and no wait states and no READY are re-
quired for the peripherals.

Register A4H programs the peripheral chip selection pins (PCS6-PCS0) along with the EX and MS bits of
register ASH. Register A4H holds the beginning or base address of the peripheral selection lines. The peripherals
may be placed in memory or in the /O map. If they are placed in the I/O map, A19-A16 of the port number must be
0000. Once the starting address is programmed on any 1K-byte I/O address boundary, the PCS pins are spaced at
128-byte intervals.

For example, if register A4H is programmed with a 0204H, with no waits and no READY synchronization,
the memory address begins at 02000H or the I/O port begins at 2000H. In this case, the IO ports are: PCS0 =
2000H, PCS1 = 2080H, PCS2 = 2100H, PCS3 = 2180H, PCS4 = 2200H, PCS5 = 2280H, and PCS6 = 2300H.

The MS bit of register A8H selects memory-mapping or /O mapping for the peripheral select pins. If MS is
a logic 0, then the PCS lines are decoded in the memory map; if it is a logic 1, then the PCS lines are in the /O
map.

The EX bit selects the function of the PCS5 and PCS6 pins. If EX = 1, these PCS pins select /O devices; if EX =
0, these pins provide the system with latched address lines A1 and A2. The Al and A2 pins are used by some I/O devices
to select internal registers and are provided for this purpose.

Programming the Chip Selection Unit for EB and EC Versions. As mentioned earlier, the EB and EC versions
have a different chip selection unit. These newer versions of the 80186/80188 contain an upper and lower memory
chip selection pin as do earlier versions, but they do not contain middle selection and peripheral selection pins. In
place of the middle and peripheral chip selection pins, the EB and EC versions contain eight general chip selection
pins (GCS7-GCS0) that select either a memory device or an I/O device.

Programming is also different because each of the chip selection pins contains a starting address register and
an ending address register. See Figure 1423 for the offset address of each pin and the contents of the start and end
registers.

Notice that programming for the EB and EC versions of the 80186/80188 are much easier than for the ear-
lier XL and XA versions. For example, to program the UCS pin for an address that begins at location FOOO0H and
ends at location FFFFFH (64K bytes), the starting address register (offset = A4H) is programmed with FOO2H for
a starting address of FOOOOH with two wait states. The ending address register (offset = A6H) is programmed with
000EH for an ending address of FFFFFH for memory with no external ready synchronization. The other chip se-
lection pins are programmed in a similar fashion.

14-3 80C188EB EXAMPLE INTERFACE

Because the 80186/80188 microprocessors are designed as embedded controllers, this section of the text provides
an example of such an application. The example illustrates simple memory and I/O attached to the 80C188EB mi-
croprocessor. It also lists the software required to program the 80C188EB and its internal registers after a system
reset. The software to control the system itself is not provided. Figure 1424 illustrates the pin-out of the 80C188EB
version of the 80188 microprocessor. Note the differences between this version and the XL version presented earlier in
the text

The 80C188EB version contains some new features that were not present on earlier versions. These features in-
clude two I/O ports (P1 and P2) that are shared with other functions and two serial communications interfaces that are
built into the processor. This version does not contain a DMA controller, as did the XL version.
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A6H UCS stop
AdH UCS start
A2H Lcs stop
AOH LCS start
9EH CGS7 stop
9CH CGS?7 start
9AH GCS6 stop
98H GCSE6 start
96H GCSS stop Start register
94H GCSS5 start 15 0
92H GCS4 stop A19 A1a|A17 A16[A15| A14/A13[A12| A11|A10| 0 | 0 |[ws3|ws2/ws1]wso
90H GCS4 start
8EH GCS3 stop
8CH GCS3 start
8AH GCS2 stop Stop register
88H GCS2 start 15 0
86H GCS1 st Slslmln
op A19| A18| A17|A16|A15| A14|A13|A12| A11jAT0| O | O | 2 T|E|D
84H GCS1 start N 1lFP
82H GCS0 stop Notes: A19-A10 are memory address A19-~A10 or /O address bits A15-A6.
gssesﬁwso seleﬂc:e betw?énsoe :‘nd :5 walit states.
enables in
80H GCS0 start ISTOP = i ISTOP = 1 the memory address is OFFFFFH or the I/O address is OFFFFH.
MEM = MEM = 1 selects memory and MEM = 0 selects /0.
RDY = enables extemal ready if RDY = 1 for more than 15 wait states.

FIGURE 14-23 The chip selection unit in the EB and EC versions of the 80186/80188.

The 80188 can be interfaced with a small system designed to be used as a microprocessor trainer. The trainer
illustrated in this text uses a 27256 EPROM for program storage, three 62256 SRAMs for data storage, an 8279
programmable keyboard/display interface, and one of the-built-in serial ports for serial communications. Figure
14-25 illustrates a small microprocessor trainer that is based on the 80C188EB microprocessor.

Memory is selected by the UCS pin-for the 27256 EPROM and the LCS pin for one of the 62256 SRAMs;
the GCS0 and GCS1 pins select the remaining SRAM devices. The 8270 keyboard/display peripheral is selected
by GCS2. Note that five wait states are programmed for the EPROM, assuming a really slow 450 ns EPROM, two
waits for the 250 ns SRAM, and two waits for the 8279 keyboard/display interface. Faster EPROM and SRAM re-
duce or eliminate the number of waits required for the memory.

The systemn places the EPROM at memory addresses FSOO0OH-FFFFFH; the SRAM at 00000H-07FFFH,
80000H-87FFFH, and 88000H-8FFFFH; and the 8279 at I/O ports 1000H-107FH. In this system, as is normally
the case, we do not modify the address of the peripheral control block, which resides at I/O ports FFOOH-FFFFH.

Example 14-5 lists the software required to initialize the 80C188EB microprocessor. It does not list any of
the software required to program the 8279, nor does it show the software required to operate the system as a mi-
croprocessor-based trainer.
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EXAMPLE 14-5
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FIGURE 14-24 The pin-out of the
80C188EB version of the 80188
microprocessor.

.MODEL SMALL

.186

.CODE

;A program that initializes the 80C188EB.

’

MAIN:

ORG

MOV
MOV

our

MOV
MOV
ouT

MOV
MoV
out

MOV
MOV

8000H

DX, OFFA6H
AX,000EH

DX, AL

DX, OFFAQH
AX, 0002H
DX, AL

DX, OFFA2H
AX, 080AH
DX, AL

DX, OFF80H
AX,0802H

;start of EPROM

;address UCS stop
; FFFFFH

;set stop address for UCS

;address LCS start
;00000H with 2 waits
;set start address for SRAM U4

;address LCS stop
; 07FFFH
;set stop address for SRAM U4

;jaddress GCS0O start
;08000H with 2 waits

453
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801B EE ouT DX,AL ;set start address for SRAM US
801C BA FF82 MOV DX, OFF82H ;address GCSO stop

801F B8 100A MOV AX,100AH ; OFFFFH

8022 EE ouT DX,AL ;set stop address for SRAM U5
8023 BA FF84 MOV DX, OFF84H ;address GCS1 start

8026 B8 1002 MOV AX,1002H ;10000H with 2 waits

8029 EE ouT DX, AL ;set start address for SRAM U6
802A BA FF86 MOV DX, OFF86H ;address GCS1 stop

802D B8 180A MOV AX,180AH ; 17FFFH

8030 EE ouT DX, AL ;set stop address for SRAM U6
8031 BA FF88 MOV DX, OFF88H ;address GCS2 start

8034 B8 1002 MOV AX,1002H ;1000H with 2 waits

8037 EE ouT DX, AL ;set start address for 8279
8038 BA FF8A MOV DX, OFF8AH ;address GCS2 stop

803B B8 1048 MOV AX,1048H ;103FH (I/0)

803E EE ouT DX, AL ;set stop address for 8279

803F BA FF60 MOV DX, OFF60H ;address serial baud rate

8042 B8 8067 MOV AX,8067H ;generate a 9600 Baud rate

8045 EE ouT DX, AL ;set Baud rate

8046 BA FF62 MOV DX, OFF62H ;address serial control register
8049 B8 0059 MOV AX,59H ;7 data, even parity, 1 stop
804C EE ouT DX, AL ;set serial port

804D BA FF66 MOV DX, 0OFF66H ;address serial status register
8050 ED IN AX, DX ;clear serial port

8051 BA FF62 MOV DX, 0OFF62H ;address serial control register
8054 ED IN AX,DX ;read control register

8055 83 C8 20 OR AX, 20H ;set REN bit

8058 EE ouT DX, AL ;enable serial port

;

;

;Remainder of system software is placed at this point.
i

’

ORG OFFFOH ;reset location
FFF0 BA FFA4 MOV DX, OFFA4H ;address UCS start
FFF3 B8 F805 MOV AX,OF805H ;F8000H with 5 waits
FFF6 EE ouT DX, AL ;set start address for UCS
FFF7 E9 8006 JMP MAIN ;jump to start of EPROM
END

14-4 SUMMARY

1. The 80186/80188 microprocessors contain the same basic instruction set as the 8086/8088 microprocessors,
except that a few additional instructions are added. The 80186/80188 are thus enhanced versions of the
8086/8088 microprocessors. The new instructions include PUSHA, POPA, INS, OUTS, BOUND, ENTER,
LEAVE, and immediate multiplication and shift/rotate counts.
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FIGURE 14-25 A small system using the 80C188EB embedded controller.



CHAPTER 15
The 80386 and 80486 Microprocessors

INTRODUCTION

The 80386 microprocessor is a full 32-bit version of the earlier 8086/80286 16-bit microprocessors, and repre-
sents a major advancement in the architecture—a switch from a 16-bit architecture to a 32-bit architecture. Along
with this larger word size are many improvements and additional features. The 80386 microprocessor features
multitasking, memory management, virtual memory (with or without paging), software protection, and a large
memory system. All software written for the early 8086/8088 and the 80286 are upward-compatible to the 80386
microprocessor. The amount of memory addressable by the 80386 is increased from the 1M bytes found in the
8086/8088 and the 16M bytes found in the 80286, to 4G bytes in the 80386. The 80386 can switch between pro-
tected mode and real mode without resetting the microprocessor. Switching from protected mode to real mode
was a problem on the 80286 microprocessor because it required a hardware reset.

The 80486 microprocessor is an enhanced version of the 80386 microprocessor that executes many of its in-
structions in one clocking period. The 80486 microprocessor also contains an 8K-byte cache memory and an im-
proved 80387 numeric coprocessor. (Note that the 80486DX4 contains a 16K-byte cache.) When the 80486 is
operated at the same clock frequency as an 80386, it performs with about a 50 percent speed improvement. In
Chapter 18, we shall see that the Pentium and Pentium Pro, which both contain a 16K cache memory, perform at
better than twice the speed of the 80486 microprocessor. The Pentium and Pentium Pro also contain improved nu-
meric coprocessors that operate five times faster than the 80486 numeric coprocessor. Chapter 17 deals with addi-
tional improvements in the Pentium II-Pentium 4 microprocessors.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

Contrast the 80386 and 80486 microprocessors with earlier Intel microprocessors.
Describe the operation of the 80386 and 80486 memory management unit and paging unit.
Switch between protected mode and real mode.

. Define the operation of additional 80386/80486 instructions and addressing modes.

. Explain the operation of a cache memory system.

. Detail the interrupt structure and direct memory access structure of the 80386/80486.

. Contrast the 80486 with the 80386 microprocessor.

. Explain the operation of the 80486 cache memory.

® NN A WD~
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FIGURE 15-1 The pin-outs of the 80386DX and 80386SX microprocessors.

15-1 INTRODUCTION TO THE 80386 MICROPROCESSOR

Before the 80386 or any other microprocessor can be used in a system, the function of each pin must be under-
stood. This section of the chapter details the operation of each pin, along with the external memory system and /O
structures of the 80386.

Figure 15-1 illustrates the pin-out of the 80386DX microprocessor. The 80386DX is packaged in a 132-pin
PGA (pin grid array). Two versions of the 80386 are commonly available: the 80386DX, which is illustrated and
described in this chapter; the other is the 80386SX, which is a reduced bus version of the 80386. A new version of
the 80386—the 80386EX—incorporates the AT bus system, dynamic RAM controller, programmable chip selec-
tion logic, 26 address pins, 16 data pins, and 24 /O pins. Figure 15-2 illustrates the 80386EX embedded PC.

The 80386DX addresses 4G bytes of memory through its 32-bit data bus and 32-bit address. The 80386SX,
more like the 80286, addresses 16M bytes of memory with its 24-bit address bus via its 16-bit data bus. The
80386SX was developed after the 80386DX for applications that didn’t require the full 32-bit bus version. The
80386SX is found in many personal computers that use the same basic motherboard design as the 80286. At the
time that the 80386SX was popular, most applications, including Windows, required fewer than 16M bytes of
memory, so the 80386SX is a popular and a less costly version of the 80386 microprocessor. Even though the
80486 has become a less expensive upgrade path for newer systems, the 80386 still can be used for many applica-
tions. For example, the 80386EX does not appear in computer systems, but it is becoming very popular in em-
bedded applications. ‘

As with earlier versions of the Intel family of microprocessors, the 80386 requires a single +5.0 V power supply for
operation. The power supply current averages 550 mA for the 25 MHz version of the 80386, 500 mA for the 20 MHz ver-
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sion, and 450 mA for the 16 MHz version. Also available is a 33 MHz

of the 1G o 32 memory locations
found in the 80386 memory system.
Note that AO and Al are encoded in the

bus enable (BE3-BEO) to select any or INTSTMRGATE
all of the four bytes in a 32-bit wide INT7TMRGATE
memory location. Also note that BO3B6EX
because the 80386SX contains a 16-bit

data bus in place of the 32-bit databus ~ FIGURE 15-2 The 80386EX embedded
found on the 80386DX, Al is present PC.

on the 80386SX, and the bank selection

signals are replaced with BHE and

BLE. The BHE signal enables the upper data bus half; the BLE signal enables the lower
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PEREQ/TMCLK2 TRST#

ERROR#TMROUT2 SMIACT#
BUSY#/TMRGATEQ DSCKO#CSS#
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version that requires 600 mA of power supply current. The power ﬁﬁfﬁ? 3 i

supply current for the 80386EX is 320 mA when operated at 33 MHz. 85— F1.9nc00s §§ :P—E

Note that during some modes of normal operation, power supply cur- F12DTrRow 0 £
rent can surge to over 1.0 A. This means that the power supply and B S10CKS oa

power distribution network must be capable of supplying these cur- %] b1 7hion 1o E

rent surges. This device contains multiple Vcc and Vss connections # P2 0CS0H §ié -}%—
that must all be connected to +5.0 V and grounded for proper opera- Peacsa D14
tion. Some of the pins are labeled N/C (no connection) and must not % Pagooat N

be connected. Additional versions of the 80386SX and 80386EX are oAt A2 %
available with a +3.3 V power supply. They are often found in 74 | pa.ormROUTO M
portable notebook or laptop computers and are usually packaged in a % PazINTo e
surface mount device. iézmg as
Each 80386 output pin is capable of providing 4.0 mA % Ezgggaggp aiz
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The function of each 80386DX group of pins follows: M) RoLmSSIOTX Hi—

i SMi# DSRINSTXCLK ity

A31-A2 Address bus connections address any % B Eer AL %

DI WDTOUT %

%

data bus half.

D31-D0 Data bus connections transfer data between the microprocessor and its memory and
1/0 system. Note that the 80386SX contains D15-DO0.

BE3-BE0 Bank enable signals select the access of a byte, word, or doubleword of data. These

signals are generated internally by the microprocessor from address bits A1 and AQ. On
the 80386SX, these pins are replaced by BHE, BLE, and Al.

M/10 Memory/IO selects a memory device when a logic 1 or an I/O device when a logic 0.
During the I/O operation, the address bus contains a 16-bit I/O address on address
connections A15-A2.

W/R Write/read indicates that the current bus cycle is a write when a logic 1 or a read when
a logic 0.
ADS The address data strobe becomes active whenever the 80386 has issued a valid

memory or I/O address. This signal is combined with the W/R signal to generate the
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separate read and write signals present in the earlier 8086-80286 microprocessor-based
systems.

RESET Reset initializes the 80386, causing it to begin executing software at memory location
FFFFFFFOH. The 80386 is reset to the real mode, and the leftmost 12 address
connections remain logic 1s (FFFH) until a far jump or far call is executed. This allows
compatibility with earlier microprocessors.

CLK2 Clock times 2 is driven by a clock signal that is twice the operating frequency of the
80386. For example, to operate the 80386 at 16 MHz, we apply a 32 MHz clock to this
pin.

READY Ready controls the number of wait states inserted into the timing to lengthen memory
accesses.

LOCK Lock becomes a logic O whenever an instruction is prefixed with the LOCK: prefix.
This is used most often during DMA accesses.

D/C Data/control indicates that the data bus contains data for or from memory or I/O when
alogic 1. If D/C is a logic 0, the microprocessor is halted or executes an interrupt
acknowledge.

BS16 Bus size 16 selects either a 32-bit data bus (BS16 = 1) or a 16-bit data bus (BS16 = 0).
In most cases, if an 80386DX is operated on a 16-bit data bus, we use the 80386SX that
has a 16-bit data bus. On the 80386EX, the BS8 pin selects an 8-bit data bus.

NA Next address causes the 80386 to output the address of the next instruction or data in
the current bus cycle.This pin is often used for pipelining the address.

HOLD Hold requests a DMA action.

HLDA Hold acknowledge indicates that the 80386 is currently in a hold condition.

PEREQ The coprocessor request asks the 80386 to relinquish control and is a direct
connection to the 80387 arithmetic coprocessor.

BUSY Busy is an input used by the WAIT or FWAIT instruction that waits for the
coprocessor to become not busy. This is also a direct connection to the 80387 from the
80386.

ERROR Error indicates to the microprocessor that an error is detected by the coprocessor.

INTR An interrupt request is used by external circuitry to request an interrupt.

NMI A non-maskable interrupt requests a non-maskable interrupt as it did on the earlier
versions of the microprocessor.

The Memory System

The physical memory system of the 80386DX is 4G bytes in size and is addressed as such. If virtual addressing
is used, 64T bytes are mapped into the 4G bytes of physical space by the memory management unit and descrip-
tors. (Note that virtual addressing allows a program to be larger than 4G bytes if a method of swapping with a
very large hard disk drive exists.) Figure 15-3 shows the organization of the 80386DX physical memory system.

The memory is divided into four 8-bit wide memory banks, each containing up to 1G bytes of memory.
This 32-bit wide memory organization allows bytes, words, or doublewords of memory data to accessed directly.
The 80386DX transfers up to a 32-bit wide number in a single memory cycle, whereas the early 8088 requires
four cycles to accomplish the same transfer, and the 80286 and 80386SX require two cycles. Today, the data
width is important, especially with single-precision floating-point numbers that are 32 bits wide. High-level soft-
ware normally uses floating-point numbers for data storage, so 32-bit memory locations speed the execution of
high-level software when it is written to take advantage of this wider memory.
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Bank 3 Bank 2 Bank 1 Bank 0
1Gx 8 1Gx8 1Gx8 1Gx 8
<«—— 16 bits 16 bits
32 bits

FIGURE 15-3 The memory system for the 80386 microprocessor. Notice
that the memory is organized as four banks, each containing 1G byte.
Memory is accessed as 8-, 16-, or 32-bit data.

Each memory byte is numbered in hexadecimal as they were in prior versions of the family. The difference
is that the 80386DX uses a 32-bit wide memory address, with memory bytes numbered from location
00000000H-FFFFFFFFH.

The two memory banks in the 8086, 80286, and 80386SX system are accessed via BLE (AO on the 8086 and
80286) and BHE. In the 80386DX, the memory banks are accessed via four bank enable signals BE3—BEO. This
arrangement allows a single byte to be accessed when one bank enable signal is activated by the microprocessor.
It also allows a word to be addressed when two bank enable signals are activated. In most cases, a word is ad-
dressed in bank 0 and 1, or in bank 2 and 3. Memory location 00000000H is in bank 0, location 00000001H is in
bank 1, location 00000002H is in bank 2, and location 00000003H is in bank 3. The 80386DX does not contain ad-
dress connections AQ and A1 because these have been encoded as the bank enable signals. Likewise, the 80386SX
does not contain the AO address pin because it is encoded in the BLE and BHE signals. The 80386EX addresses
data either in two banks for a 16-bit wide memory system if BS8 = 1 or as an 8-bit system if BS8 = 0.

Buffered System. Figure 154 shows the 80386DX connected to buffers that increase fan-out from its address,
data, and control connections. This microprocessor is operated at 25 MHz using a 50 MHz clock input signal that
is generated by an integrated oscillator module. Oscillator modules are usually used to provide a clock in modern
microprocessor-based equipment. The HLDA signal is used to enable all buffers in a system that uses direct
memory access. Otherwise, the buffer enable pins are connected to ground in a non-DMA system.

Pipelines and Caches. The cache memory is a buffer that allows the 80386 to function more efficiently with
lower DRAM speeds. A pipeline is a special way of handling memory accesses so the memory has additional time
to access data. A 16 MHz 80386 allows memory devices with access times of 50 ns or less to operate at full speed.
Obviously, there are few DRAMs currently available with these access times. In fact, the fastest DRAMs currently
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in use have an access time of 60 ns or longer. This means that some technique must be found to interface these
memory devices, which are slower than required by the microprocessor. Three techniques are available: inter-
leaved memory, caching, and a pipeline.

The pipeline is the preferred means of interfacing memory because the 80386 microprocessor supports
pipelined memory accesses. Pipelining allows memory an extra clocking period to access data. The extra clock ex-
tends the access time from 50 ns to 81 ns on an 80386 operating with a 16 MHz clock. The pipe, as it is often
called, is set up by the microprocessor. When an instruction is fetched from memory, the microprocessor often has
extra time before the next instruction is fetched. During this extra time, the address of the next instruction is sent
out from the address bus ahead of time. This extra time (one clock period) is used to allow additional access time
to slower memory components.

Not all memory references can take advantage of the pipe, which means that some memory cycles are not
pipelined. These non-pipelined memory cycles request one wait state if the normal pipeline cycle requires no wait
states. Overall, a pipe is a cost-saving feature that reduces the access time required by the memory system in low-
speed systems.

Not all systems can take advantage of the pipe. Those systems typically operate at 20, 25, or 33 MHz. In these
higher-speed systems, another technique must be used to increase the memory system speed. The cache memory
system improves overall performance of the memory systems for data that are accessed more than once. Note that
the 80486 contains an internal cache called a level one cache and the 80386 can only contain an external cache
called a level two cache.

A cache is a high-speed memory system that is placed between the microprocessor and the DRAM memory
system. Cache memory devices are usually static RAM memory components with access times of less than 25 ns.
In many cases, we see level 2 cache memory systems with sizes between 32K and 1M byte. The size of the cache
memory is determined more by the application than by the microprocessor. If a program is small and refers to little
memory data, a small cache is beneficial. If a program is large and references large blocks of memory, the largest
cache size possible is recommended. In many cases, a 64K-byte cache improves speed sufficiently, but the max-
imum benefit is often derived from a 256K-byte cache. It has been found that increasing the cache size much be-
yond 256K provides little benefit to the operating speed of the system that contains an 80386 microprocessor.

Interleaved Memory Systems. An interleaved memory system is another method of improving the speed of a
system. Its only disadvantage is that it costs considerably more memory because of its structure. Interleaved
memory systems are present in some systems, so memory access times can be lengthened without the need for wait
states. In some systems, an interleaved memory may still require wait states, but may reduce their number. An in-
terleaved memory system requires two or more complete sets of address buses and a controller that provides ad-
dresses for each bus. Systems that employ two complete buses are called a two-way interleave; systems that.use
four complete buses are called a four-way interleave.

An interleaved memory is divided into two or four parts. For example, if an interleaved memory system is
developed for the 80386SX microprocessor, one part contains the 16-bit addresses 000000H-000001H,
000004H-000005H, etc.; the other part contains addresses 000002~ 000003, 000006H~000007H, etc. While the mi-
croprocessor accesses locations 000000H-000001H, the interleave control logic generates the address strobe signal for
locations 000002H-000003H. This selects and accesses the word at location 000002H-000003H, while the micro-
processor processes the word at location 000000H-000001H. This process alternates memory sections, thus in-
creasing the performance of the memory system.

Interleaving lengthens the amount of access time provided to the memory because the address is generated
to select the memory before the microprocessor accesses it. This is because the microprocessor pipelines memory
addresses, sending the next address out before the data are read from the last address.

The problem with interleaving, although not major, is that the memory addresses must be accessed so that
each section is alternately addressed. This does not always happen as a program executes. Under normal program
execution, the microprocessor alternately addresses memory approximately 93 percent of the time. For the re-
maining 7 percent, the microprocessor addresses data in the same memory section, which means that in these 7
percent of the memory accesses, the memory system must cause wait states because of the reduced access time.
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The access time is reduced because the memory must wait until the previous data are transferred before it can ob-
tain its address. This leaves the memory with less access time; therefore, a wait state is required for accesses in the
same memory bank.

See Figure 15-5 for the timing diagram of the address as it appears at the microprocessor address pins. This
timing diagram shows how the next address is output before the current data are accessed. It also shows how access
time is increased by using interleaved memory addresses for each section of memory compared to a non-interleaved
access, which requires a wait state.

Figure 15-6 pictures the interleave controller. Admittedly, this is a complex logic circuit, which needs some
explanation. First, if the SEL input (used to select this section of the memory) is inactive (logic 0), then the WAIT
signal is a logic 1. Also, both ALEO and ALEI, used to strobe the address to the memory sections, are both logic
Is, causing the latches connected to them to become transparent.

As soon as the SEL input becomes a logic 1, this circuit begins to function. The Al input is used to
determine which latch (U2B or U5A) becomes a logic 0, selecting a section of the memory. Also the ALE pin that
becomes a logic 0 is compared with the previous state of the ALE pins. If the same section of memory is accessed
a second time, the WAIT signal becomes a logic 0, requesting a wait state.

Figure 15-7 illustrates an interleaved memory system that uses the circuit of Figure 15-6. Notice how the
ALEO and ALE1 signals are used to capture the address for either section of memory. The memory in each bank is
16-bits wide. If accesses to memory require 8-bit data, the system causes wait states, in most cases. As a program
executes, the 80386SX fetches instruction 16-bits at a time from normally sequential memory locations. Program
execution uses interleaving in most cases. If a system is going to access mostly 8-bit data, it is doubtful that
memory interleaving will reduce the number of wait states.

The access time allowed by an interleaved system, such as the one shown in Figure 15-7, is increased to 112
ns from 69 ns by using a 16 MHz system clock. (If a wait state is inserted, access time with a 16 MHz clock is 136
ns, which means that an interleaved system performs at about the same rate as a system with one wait state.) If the
clock is increased to 20 MHz, the interleaved memory requires 89.6 ns, where standard, non-interleaved memory
interfaces allow 48 ns for memory access. At this higher clock rate, 80 ns DRAM:s function properly, without wait
states when the memory addresses are interleaved. If an access to the same section occurs, then a wait state is in-
serted.

The Input/Qutput System

The 80386 input/output system is the same as that found in any Intel 8086 family microprocessor-based system.
There are 64K different bytes of /O space available if isolated /O is implemented. With isolated 1/0, the IN and
OUT instructions are used to transfer I/O data between the microprocessor and I/O devices. The I/O port address
appears on address bus connections A15-A2, with BE3-BEO used to select a byte, word, or doubleword of /O
data. If memory-mapped I/O is implemented, then the number of I/O locations can be any amount up to 4G bytes.
With memory-mapped /O, any instruction that transfers data between the microprocessor and memory system can
be used for I/O transfers because the I/O device is treated as a memory device. Almost all 80386 systems use iso-
lated I/O because of the 1/O protection scheme provided by the 80386 in protected mode operation.

Figure 15-8 shows the 1/0 map for the 80386 microprocessor. Unlike the I/O map of earlier Intel micro-
processors, which were 16-bits wide, the 80386 uses a full 32-bit wide /O system divided into four banks. This is
identical to the memory system, which is also divided into four banks. Most /O transfers are 8-bits wide because
we often use ASCII code (a 7-bit code) for transferring alphanumeric data between the microprocessor and printers
and keyboards. This may change if Unicode, a 16-bit alphanumeric code, becomes common and replaces ASCII
code. Recently, I/O devices that are 16- and even 32-bits wide have appeared for systems such as disk memory and
video display interfaces. These wider I/O paths increase the data transfer rate between the microprocessor and the
/O device when compared to 8-bit transfers.

The /O locations are numbered from 0000H-FFFFH. A portion of the I/O map is designated for the 80387
arithmetic coprocessor. Although the port numbers for the coprocessor are well above the normal I/O map, it is im-
portant that they be taken into account when decoding /O space (overlaps). The coprocessor uses /O location



466 CHAPTER 15 THE 80386 AND 80486 MICROPROCESSORS

‘fowsw

4O SUOND8S Yjoq 4o} Sjeubis ssaippe pue saull} SS8d0e 8} Buimoys walshs Alowaw paAespsiul ue Jo wesbelp buiw 8yl  S—-G1 IHNOIL

(paAeapauIuOU)
. (em & yum)
——— 8y} SS8%0e () UOI08S — P

<——— B} SSO00B () UONJBS

(paneayau)

—

: (peAesuaIUl)

“1|“ BWI} SS8IOL | UOHOAG ———

Rl

-

ssaippe
} uonoes

'
'
'
1
'
1
[}
'
v
1
"

gsaippe 6 uonoeg

mmm_uumwo uonoes

mmEvuMmo uonoes

wwa‘_vumwo uonodeg

ssaippe
0 uoioesg

=

|

—

-

.......... C

| uonoes

esayv

0sav

0 uonoes

1£0—00

ssaippe
0 uopoes

SSeIppe
0 Uonoes

SSeippe
| UoROaS

N

X

SSGIpPE
0 uoideg

X

Lev—ev

A
Y
A
v
A

zL ML 1
(wemy)

|————— JgjSURI} Q UONOEG — P~

:
:

cl L

le—— Jajsuel) O UONOES —>-

[48 Ll

l€—— Jajsuel} | UoRIeS —>-

v
)

(438 L

le—— 13jsuel) O uondes —»

A10



467

INTRODUCTION TO THE 80386 MICROPROCESSOR

15-1

“Aiowaw paneapsiul jo1u0D 0} pasn [eubis | |¥M € pue sjeubls Sy ajesedas sejessusb yoym 0160} |01JUCD PeAesUBlUI 8UYL  9~S1 IHNOIL

1ivM

2LSYRL m_ 20SVrL
zl
72 3 Y= 7
1 [1}
w 0P am
80SVYL
510 d = z
B
123 T vsn &q
zZt 1 3
3 aon YOSVPL
5 80SY¥L 20SVbL vin
ven o1 ZsveL | . }
] P b1 -
3 L _A 3 v
%N , oin
712 J Y= 00SVYL
o " odg 208V LM
YOSVYL o i ¢ o .‘Qh ° oaum
gen o S 00SV¥L gen
€ v 1 amn 3s
arn
3
ven
10
s 80SVYL TS,
ZHSWL L i
Sw o S auswee 5
o 1 1 M
9 5 vz 2 3 1 . P
an MO 9 1= o H
u 80SV¥L u e 1o 205VrL
- 1 el d thm " t
" m | = 20A =10 d e
vLn T asn | 3 p—sav
van vin
ven




468 CHAPTER 15 THE 80386 AND 80486 MICROPROCESSORS

Memory
section

Address bus
> Latch
1 4
CcS
ALE |

Memory
| Latch -> section
atc 1
V | 4
ALE U

A4

Decoder CcSs
A3]| Interleave
U logic
MRDC 09!
MWTC
CLK
ADS ALEO
SEL ALE1
WAIT
WA (see Fig. 17-6)

FIGURE 157 An interleaved memory system showing the address latches and the interleaved logic
circuit.

800000F8H-800000FFH for communications between the 80387 and 80386. The 80287 numeric coprocessor de-
signed to use with the 80286 uses the I/O addresses 00F8H-00FFH for coprocessor communications. Because we
often decode only address connections A15-A2 to select an /O device, be aware that the coprocessor will activate
devices 00F8H—OOFFH unless address line A31 is also decoded. This should present no problem because you really
should not be using /O ports 00F8H-00FFH for any purpose.

The only new feature that was added to the 80386 with respect to /O is the I/O privilege information added
to the tail end of the TSS when the 80386 is operated in protected mode. As described in the section on memory
management, an 1/O location can be blocked or inhibited in the protected mode. If the blocked I/O location is ad-
dressed, an interrupt (type 13, general fault) is generated. This scheme is added so that /O access can be prohib-
ited in a multiuser environment. Blocking is an extension of the protected mode operation, as are privilege levels.

Memory and 1/0 Control Signals

The memory and I/O are controlled with separate signals. The M/IO signal indicates whether the data transfer is
between the microprocessor and the memory (M/I0 = 1) or /O (M/IO = 0). In addition to M/IO, the memory and
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Bank 3 Bank 2 Bank 1 Bank 0
FFFF FFFC

0003 0000

FIGURE 15-8 The isolated /O map for the 80386 microprocessor.
Here four banks of 8-bits each are used to address 64K different /O
locations. I/O is numbered from location 0000H to FFFFH.

WA HA Yopl2—— iORC
=1 B Y1 D'r——
M/i0 c Y2 P+ 2 lowc
Y3 53 e
6 va pil MRDC
G1 v5 o1 YT oo
7 3 MWTC
o G2A Y6
ADS - G28B Y7 p-L—
74F138

FIGURE 15-9 Generation of memory and 1/O control signals for the
80386, 80486, and Pentium.

I/O systems must read or write data. The W/R signal is a logic O for a read operation, and a logic 1 for a write op-
eration. The ADS signal is used to qualify the M/IO and W/R control signals. This is a slight deviation from ear-
lier Intel microprocessors, which didn’t use ADS for qualification.

See Figure 15-9 for a simple circuit that generates four control signals for the memory and I/O devices in the
system. Notice that two control signals are developed for memory control (MRDC and MWTC) and two for I/O con-
trol (IORC and IOWC). These signals are consistent with the memory and /O control signals generated for use in ear-
lier versions of the Intel microprocessor.

Timing
Timing is important for understanding how to interface memory and /O to the 80386 microprocessor. Figure 15-10

shows the timing diagram of a non-pipelined memory read cycle. Note that the timing is referenced to the CLK2 input
signal and that a bus cycle consists of four clocking periods.
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T2
je—1

Address

Data

B ok R P

ADS

33 MHz 25 MHz 20 MHz 16 MHz
Time 1: 4-15ns 4-21ns 4-30 ns 4-36 ns
Time 2: 5ns 7 ns 11ns 11 ns
Time 3: 46 ns 52 ns 59 ns 78 ns

FIGURE 15-10 The non-pipelined read timing for the 80386 microprocessor.

Each bus cycle contains two clocking states with each state (T1 and T2) containing two clocking periods.
Note in Figure 15-10 that the access time is listed as time number 3. The 16 MHz version allows memory an access
time of 78 ns before wait states are inserted in this non-pipelined mode of operation. To select the non-pipelined
mode, we place a logic 1 on the NA pin.

Figure 15-11 illustrates the read timing when the 80386 is operated in the pipelined mode. Notice that addi-
tional time is allowed to the memory for accessing data because the address is sent out early. Pipelined mode is se-
lected by placing a logic 0 on the NA pin and by using address latches to capture the pipelined address. The clock
pulse that is applied to the address latches comes from the ADS signal. Address latches must be used with a
pipelined system, as well as with interleaved memory banks. The minimum number of interleaved banks of two
and four have been successfully used in some applications.

Notice that the pipelined address appears one complete clocking state before it normally appears with non-
pipelined addressing. In the 16 MHz version of the 80386, this allows an additional 62.5 ns for memory access. In a
non-pipelined system, a memory access time of 78 ns is allowed to the memory system; in a pipelined system, 140.5
ns is allowed. The advantages of the pipelined system are that no wait states are required (in many, but not all bus cy-
cles) and much lower-speed memory devices may be connected to the microprocessor. The disadvantage is that we
need to interleave memory to use a pipe, which requires additional circuitry and occasional wait states.

Wait States

Wait states are needed if memory access times are long compared with the time ailowed by the 80386 for memory
access. In a non-pipelined 33 MHz system, memory access time is only 46 ns. Currently, no DRAM memory exists that
has an access time of 46 ns. This means that wait states must be introduced to access the DRAM (one wait for 60 ns
DRAM) or an EPROM that has an access time of 100 ns (two waits). Note that this wait state is built into a mother-
board and cannot be removed.
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i T1 E T2 : T : T2 E

: —>] |1 : ; :
Address | Address1 | Address 2 X Address 3 !

E P e 3 > 2

e Dt (e o

—_— / N\

FIGURE 15-11 The pipelined read timing for the 80386 microprocessor.

'
'
i
]
1
'

Data ; >----------- :
READY | ’

FIGURE 15-12 A non-pipelined 80386 with 0 and 1 wait states.

The READY input controls whether or not wait states are inserted into the timing. The READY input on the
80386 is a dynamic input that must be activated during each bus cycle. Figure 15~12 shows a few bus cycles with one
normal (no wait) cycle and one that contains a single wait state. Notice how the READY is controlled to cause Oor
1 wait.
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FIGURE 15-13 (a) Circuit and (b) timing that selects 1 wait state for DRAM and 2 waits for EPROM.

The READY signal is sampled at the end of a bus cycle to determine whether the clock cycle is T2 or TW.
If READY = 0 at this time, it is the end of the bus cycle or T2. If READY is 1 at the end of a clock cycle, the cycle
is a TW and the microprocessor continues to test READY, searching for a logic 0 and the end of the bus cycle.

In the non-pipelined system, whenever ADS becomes a logic 0, a wait state is inserted if READY = 1. After
ADS returns to a logic 1, the positive edges of the clock are counted to generate the READY signal. The READY
signal becomes a logic O after the first clock to insert O wait states. If 1 wait state is inserted, the READY line must
remain a logic 1 until at least two clocks have elapsed. If additional wait states are desired, then additional time must
elapse before READY is cleared. This essentially allows any number of wait states to be inserted into the timing.
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Figure 15-13 shows a circuit that inserts O through 3 wait states for various memory addresses. In the
example, 1 wait state is produced for a DRAM access and 2 wait states for an EPROM access. The 74F164 clears
whenever ADS is low and D/C is high. It begins to shift after ADS returns to a logic 1 level. As it shifts, the
00000000 in the shift register begins to fill with logic 1s from the QA connection toward the QH connection. The
four different outputs are connected to an inverting multiplexer that generates the active low READY signal.

15-2 SPECIAL 80386 REGISTERS

A new series of registers, not found in earlier Intel microprocessors, appears in the 80386 as control, debug and
test registers. Control registers CRO-CR3 control various features, DRO-DR?7 facilitate debugging, and registers
TR6 and TR7 are used to test paging and caching.

Control Registers

In addition to the EFLAGS and EIP as described earlier, there are other control registers found in the 80386. Con-
trol register O (CRO) is identical to the MSW (machine status word) found in the 80286 microprocessor, except that
it is 32 bits wide instead of 16 bits wide. Additional control registers are CR1, CR2, and CR3.

Figure 15--14 illustrates the control register structure of the 80386. Control register CR1 is not used in the
80386, but is reserved for future products. Control register CR2 holds the linear page address of the last page ac-
cessed before a page fault interrupt. Finally, control register CR3 holds the base address of the page directory. The
rightmost 12 bits of the 32-bit page table address contain zeros and combine with the remainder of the register to
locate the start of the 4K-long page table.

Register CRO contains a number of special control bits that are defined as follows in the 80386:

PG Selects page table translation of linear addresses into physical addresses when
PG = 1. Page table translation allows any linear address to be assigned any physical
memory location.

ET Selects the 80287 coprocessor when ET = 0 or the 80387 coprocessor when
ET = 1. This bit was installed because there was no 80387 available when the 80386
first appeared. In most systems, ET is set to indicate that an 80387 is present in the

system.
MSW
&1  ooo000000000000 00000000000 (5§ I,a ME] cro
Not used CR1
Page fault linear address CR2
Page directory base 000000000000 | CR3

FIGURE 15-14 The control register structure of the 80386 microprocessor.
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TS Indicates that the 80386 has switched tasks (in protected mode, changing the
contents of TR places a 1 into TS). If TS = 1, a numeric coprocessor instruction
causes a type 7 (coprocessor not available) interrupt.

EM Is set to cause a type 7 interrupt for each ESC instruction. (ESCape instructions are
used to encode instructions for the 80387 coprocessor.) We often use this interrupt to
emulate, with software, the function of the coprocessor. Emulation reduces the
system cost, but it often requires at least 100 times longer to execute the emulated
coprocessor instructions.

MP Is set to indicate that the arithmetic coprocessor is present in the system.

PE Is set to select the protected mode of operation for the 80386. It may also be cleared
to re-enter the real mode. This bit can only be set in the 80286. The 80286 could not
return to real mode without a hardware reset, which precludes its use in most
systems that use protected mode.

Debug and Test Registers

Figure 15-15 shows the sets of debug and test registers. The first four debug registers contain 32-bit linear
breakpoint addresses. (A linear address is a 32-bit address generated by a microprocessor instruction that
may or may not be the same as the physical address.) The breakpoint addresses, which may locate an instruc-
tion or datum, are constantly compared with the addresses generated by the program. If a match occurs, the
80386 will cause a type 1 interrupt (TRAP or debug interrupt) to occur, if directed by debug registers DR6 and
DR?7. This feature is a much-expanded version of the basic trapping or tracing allowed with the earlier Intel mi-

31 16 15 0
BREAKPOINT 0 LINEAR ADDRESS DRO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 3 LINEAR ADDRESS DR3
Intel reserved. Do not define. DR4
Intel reserved. Do not define. DR5

0 B18(B]o[o|o]o[o]o]o]o[o[5[5]5|a| ©Re

LEN |R|W]| LEN |R|W] LEN |R|W]| LEN RWOOGOOOGLGLGLGLGL DR7
3 |313] 2 2|21 1 |1|1] O |O}j0 D E|E|313]2|2|1]1]|0]0
31 16 15 0
31 12] 11 0

\"
LINEAR ADDRESS O e YISt %o [ofo]ofc] e
PHYSICAL ADDRESS ojojojojojo]oO E REP 0| 0] TR7

FIGURE 15-15 The debug and test registers of the 80386. (Courtesy of Iintel Corporation.)
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croprocessors through the type 1 interrupt. The breakpoint addresses are very useful in debugging faulty soft-
ware. The control bits in DR6 and DR7 are defined as follows:

BT If set (1), the debug interrupt was caused by a task switch.

BS If set, the debug interrupt was caused by the TF bit in the flag register.

BD If set, the debug interrupt was caused by an attempt to read the debug register with
the GD bit set. The GD bit protects access to the debug registers.

B3-B0 Indicate which of the four debug breakpoint addresses caused the debug interrupt.

LEN Each of the four length fields pertains to each of the four breakpoint addresses stored

in DRO-DR3. These bits further define the size of access at the breakpoint address as
00 (byte), 01 (word), or 11 (doubleword).

RW Each of the four read/write fields pertains to each of the four breakpoint addresses
stored in DRO-DR3. The RW field selects the cause of action that enabled a
breakpoint address as 00 (instruction access), 01 (data write), and 11 (data read and
write).

GD If set, GD prevents any read or write of a debug register by generating the debug
interrupt. This bit is automatically cleared during the debug interrupt so that the
debug registers can be read or changed, if needed.

GE If set, selects a global breakpoint address for any of the four breakpoint address
registers.

LE If set, selects a local breakpoint address for any of the four breakpoint address
registers.

The test registers, TR6 and TR7, are used to test the translation look-aside buffer (TLB). The TLB is used
with the paging unit within the 80386. The TLB holds the most commonly used page table address translations.
The TLB reduces the number of memory reads required for looking up page translation addresses in the page
translation tables. The TLB holds the most common 32 entries from the page table, and it is tested with the TR6
and TR7 test registers.

Test register TR6 holds the tag field (linear address) of the TLB, and TR7 holds the physical address of the
TLB. To write a TLB entry, perform the following steps:

1. Write TR7 for the desired physical address, PL, and REP values.
2. Write TR6 with the linear address, making sure that C = 0.
To read a TLB entry:
1. Write TR6 with the linear address, making sure that C = 1.
2. Read both TR6 and TR7. If the PL bit indicates a hit, then the desired values of TR6 and TR7 indicate the con-
tents of the TLB.
The bits found in TR6 and TR7 indicate the following conditions:
Shows that the entry in the TLB is valid.
Indicates that the entry in the TLB is invalid or dirty.
A bit for the TLB.
Indicates that the area addressed by the TLB entry is writable.
Selects a write (0) or immediate lookup (1) for the TLB.
Indicates a hit if a logic 1.
P Selects which block of the TLB is written.

EE0EaO <

Refer to the section on memory management and the paging unit for more detail on the function of the TLB.
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15-3 80386 MEMORY MANAGEMENT

The memory-management unit (MMU) within the 80386 is similar to the MMU inside the 80286, except that the
80386 contains a paging unit not found in the 80286. The MMU performs the task of converting linear addresses,
as they appear as outputs from a program, into physical addresses that access a physical memory location located
anywhere within the memory system. The 80386 uses the paging mechanism to allocate any physical address to
any logical address. Therefore, even though the program is accessing memory location AOOOOH with an instruc-
tion, the actual physical address could be memory location 100000H, or any other location if paging is enabled.
This feature allows virtually any software, written to operate at any memory location, to function in an 80386 be-
cause any linear location can become any physical location. Earlier Intel microprocessors did not have this flexi-
bility. Paging is used with DOS to relocate 80386 and 80486 memory at addresses above FFFFFH and into spaces
between ROMs at locations DOOOO-DFFFFH and other areas as they are available. The area between ROMs is
often referred to as upper memory; the area above FFFFFH is referred to as extended memory.

Descriptors and Selectors

Before the memory paging unit is discussed, we examine the descriptor and selector for the 80386 microprocessor.
The 80386 uses descriptors in much the same fashion as the 80286. In both microprocessors, a descriptor is a se-
ries of eight bytes that describe and locate a memory segment. A selector (segment register) is used to index a de-
scriptor from a table of descriptors. The main difference between the 80286 and 80386 is that the latter has two
additional selectors (FS and GS) and the most-significant two bytes of the descriptor are defined for the 80386.
Another difference is that 80386 descriptors use a 32-bit base address and a 20-bit limit, instead of the 24-bit base
address and a 16-bit limit found on the 80286.

The 80286 addresses a 16M-byte memory space with its 24-bit base address and has a segment length limit of
64K bytes, due to the 16-bit limit. The 80386 addresses a 4G-byte memory space with its 32-bit base address and has
a segment length limit of 1M bytes or 4G bytes, due to a 20-bit limit that is used in two different ways. The 20-bit limit
can access a segment with a length of 1M byte if the granularity bit (G) = 0. If G = 1, the 20-bit limit allows a segment
length of 4G bytes.

The granularity bit is found in the 80386 descriptor. If G = 0, the number stored in the limit is interpreted di-
rectly as a limit, allowing it to contain any limit between 00000H and FFFFFH for a segment size up to 1M byte.
If G = 1, the number stored in the limit is interpreted as 00000XXXH-FFFFFXXXH, where the XXX is any value
between 000H and FFFH. This allows the limit of the segment to range between 0 bytes to 4G bytes in steps of 4K
bytes. A limit of 00001H indicates that the limit is 4K bytes when G = 1 and 1 byte when G = 0. An example is a
segment that begins at physical address 10000000H. If the limit is 00001H and G = 0, this segment begins at
10000000H and ends at 10000001H. If G = 1 with the same limit (00001H), the segment begins at location
10000000H and ends at location 10001FFFH.

Figure 15-16 shows how the 80386 addresses a memory segment in the protected mode using a selector and a
descriptor. Note that this is identical to the way that a segment is addressed by the 80286. The difference is the size of
the segment accessed by the 80386. The selector usesits leftmost 13 bits to select a descriptor from a descriptor table.
The TI bit indicates either the local (T = 1) or global (7I = 0) descriptor table. The rightmost two bits of the selector
define the requested privilege level of the access.

Because the selector uses a 13-bit code to access a descriptor, there are at most 8192 descriptors in each
table—local or global. Because each segment (in an 80386) can be 4G bytes in length, we can access 16,384 seg-
ments at a time with the two descriptor tables. This allows the 80386 to access a virtual memory size of 64T bytes.
Of course, only 4G bytes of memory actually exist in the memory system (1T byte = 1024G bytes). If a program
requires more than 4G bytes of memory at a time, it can be swapped between the memory system and a disk drive
or other form of large volume storage.

The 80386 uses descriptor tables for both global (GDT) and local (LDT) descriptors. A third descriptor table
appears for interrupt (IDT) descriptors or gates. The first six bytes of the descriptor are the same as in the 80286,
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SEGMENT LIMIT
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MEMORY OPERAND
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ACCESS RIGHTS
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FIGURE 15-16 Protected mode addressing using a segment register as
a selector. (Courtesy of Intel Corporation.)

80286 Descriptor 80386 Descriptor
Reserved 6 Base (B24~-B31) G|D|O 9 (L,'g"_"‘_",g) 6
Access rights Base (B23-B16) |4 Access rights Base (B23-B16) |4
Base (B15-B0) 2 Base (B15-B0) 2
Limit (L15~L0) 0 Limit (L15-10) 0
FIGURE 15~17 The descriptors for the 80286 and 80386 microprocessors.

which allows 80286 software to be upward compatible with the 80386. (An 80286 descriptor used O0H for its most
significant two bytes.) See Figure 15-17 for the 80286 and 80386 descriptor. The base address is 32 bits in the
80386, the limit is 20 bits, and a G bit selects the limit multiplier (1 or 4K times). The fields in the descriptor for
the 80386 are defined as follows:

Base (B31-B0)

Limit (L19-L0)

Access Rights

Defines the starting 32-bit address of the segment within the 4G-byte physical address
space of the 80386 microprocessor.

Defines the limit of the segment in units of bytes if the G bit = 0, or in units of 4K bytes
if G = 1. This allows a segment to be of any length from 1 byte to 1M bytes if G = 0,
and from 4K bytes to 4G bytes if G = 1. Recall that the limit indicates the last byte in a
segment.

Determines privilege level and other information about the segment. This byte varies
with different types of descriptors and is elaborated with each descriptor type:

The granularity bit selects a multiplier of 1 or 4K times for the limit field. If G = 0, the
multiplier is 1; if G = 1, the multiplier is 4K.

Selects the default register size. If D = 0, the registers are 16-bits wide, as in the 80286; if
D = 1, they are 32-bits wide, as in the 80386. This bit determines whether prefixes are
required for 32-bit data and index registers. If D = 0, then a prefix is required to access 32-
bit registers and to use 32-bit pointers. If D = 1, then a prefix is required to access 16-bit
registers and 16-bit pointers. The USE16 and USE32 directives appended to the
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AVL

Access rights byte ~—

80386 Descriptor
Base (B24-B31) |G|D|O]|V|wiedig |6

plopLs|E|x|rw|A| Base (B23-B16) |4

Base (B15-B0) 2

Limit (L15-L0) 0

FIGURE 15-18 The format of the 80386 segment descriptor.

SEGMENT statement in assembly language control the setting of the D bit. In the real
mode, it is always assumed that the registers are 16-bits wide, so any instruction that
references a 32-bit register or pointer must be prefixed. The current version of DOS
assumes D =0.

This bit is available to the operating system to use in any way that it sees fit. It often
indicates that the segment described by the descriptor is available.

Descriptors appear in two forms in the 80386 microprocessor: the segment descriptor and the system de-

scriptor. The segment descriptor defines data, stack, and code segments; the system descriptor defines information
about the system’s tables, tasks, and gates.

Segment Descriptors. Figure 15-18 shows the segment descriptor. This descriptor fits the general form, as dic-
tated in Figure 15-17, but the access rights bits are defined to indicate how the data, stack, or code segment de-
scribed by the descriptor functions. Bit position 4 of the access rights byte determines whether the descriptor is a
data or code segment descriptor (S = 1) or a system segment descriptor (S = 0). Note that the labels used for these
bits may vary in different versions of Intel literature, but they perform the same tasks.

P

DPL

RW

Following is a description of the access rights bits and their function in the segment descriptor:

Present is a logic 1 to indicate that the segment is present. If P = 0 and the segment is
accessed through the descriptor, a type 11 interrupt occurs. This interrupt indicates that
a segment was accessed that is not present in the system.

Descriptor privilege level sets the privilege level of the descriptor, where 00 has the
highest privilege and 11 has the lowest. This is used to protect access to segments. If a
segment is accessed with a privilege level that is lower (higher in number) than the
DPL, a privilege violation interrupt occurs. Privilege levels are used in multiuser
systems to prevent access to an area of the system memory.

Segment indicates a data or code segment descriptor (S = 1), or a system segment
descriptor (S = 0).

Executable selects a data (stack) segment (E = 0) or a code segment (E = 1). E also
defines the function of the next two bits (X and RW).

If E = 0, then X indicates the direction of expansion for the data segment. If X = 0, the
segment expands upward, as in a data segment; if X = 1, the segment expands
downward as in a stack segment. If E = 1, then X indicates whether the privilege level
of the code segment is ignored (X = 0) or observed (X = 1).

If E = 0, then RW indicates that the data segment may be written (RW = 1) or not
written (RW = 0). If E = 1, then RW indicates that the code segment may be read (RW =
1) or not read (RW = 0).
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80386 Descriptor

Base (B24-B31) |G|O|O|O] e |6

ploeL|oO

Access rights byte —-|

Type, | Base (B23-B16) |4

Base (B15-B0) 2

Limit (L15-L0) 0

FIGURE 15-19 The general format of an 80386 system

descriptor.

A Accessed is set each time that the microprocessor accesses the segment. It is sometimes
used by the operating system to keep track of which segments have been accessed.

System Descriptor. The system descriptor is illustrated in
Figure 15-19. There are 16 possible system descriptor types
(see Table 15-1 for the different descriptor types), but not all
are used in the 80386 microprocessor. Some of these types are
defined for the 80286 so that the 80286 software is compatible
with the 80386. Some of the types are new and unique to the
80386; some have yet to be defined and are reserved for future
Intel products.

Descriptor Tables

The descriptor tables define all the segments used in the 80386
when it operates in the protected mode. There are three types of
descriptor tables: the global descriptor table (GDT), the local
descriptor table (LDT), and the interrupt descriptor table (IDT).
The registers used by the 80386 to address these three tables are
called the global descriptor table register (GDTR), the local
descriptor table register (LDTR), and the interrupt descriptor
table register (IDTR). These registers are loaded with the
LGDT, LLDT, and LIDT instructions, respectively.

The descriptor table is a variable-length array of data,
with each entry holding an 8-byte long descriptor. The local and
global descriptor tables hold up to 8192 entries each, and the

TABLE 15-1 80386 system descriptor
types.

Type Purpose

0000 Invalid

0001 Available 80286 TSS

0010 LDT

0011 Busy 80286 TSS

0100 80286 call gate

0101 Task gate (80286 or 80386)
0110 80286 interrupt gate

o111 80286 trap gate

1000 Invalid

1001 Available 80386 TSS

1010 Reserved for future Intel products
1011 Busy 80386 TSS

1100 80386 call gate

1101 Reserved for future Intel products
1110 80386 interrupt gate

1111 80836 trap gate

interrupt descriptor table holds up to 256 entries. A descriptor is indexed from either the local or global descriptor
table by the selector that appears in a segment register. Figure 15-20 shows a segment register and the selector that

it holds in the protected mode. The leftmost 13 bits index a

descriptor, the TI bit selects either the local (77 = 1) or 15

3210

global (TT = 0) descriptor table, and the RPL bits indicate
the requested privilege level.

Selector Ti} RPL

1
¢

Whenever a new selector is placed into one of the
segment registers, the 80386 accesses one of the descriptor
tables and automatically loads the descriptor into a pro-

Segment register

gram-invisible cache portion of the segment register. As FIGURE 15-20 A segment register showing

long as the selector remains the same in the segment register, the
no additional accesses are required to the descriptor table.

selector, T1 bit, and requested privilege level

(RPL) bits.
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Memory system
FFFFFFFF
Global descriptor table
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00000000

FIGURE 15-21 Using the DS register to select a descriptor from the'global descriptor table. In
this example, the DS register accesses memory locations 00100000H-001000FFH as a data
segment.

The operation of fetching a new descriptor from the descriptor table is program-invisible because the microprocessor
automatically accomplishes this each time that the segment register contents are changed in the protected mode.

Figure 15-21 shows how a sample global descriptor table (GDT), which is stored at memory address
00010000H, is accessed through the segment register and its selector. This table contains four entries. The first is
a null (0) descriptor. Descriptor 0 must always be a null descriptor. The other entries address various segments in
the 80386 protected mode memory system. In this illustration, the data segment register contains a 0008H. This
means that the selector is indexing descriptor location 1 in the global descriptor table (77 = 0), with a requested
privilege level of 00. Descriptor 1 is located eight bytes above the base descriptor table address, beginning at
location 00010008H. The descriptor located in this memory location accesses a base address of 00200000H and a
limit of 100H. This means that this descriptor addresses memory locations 00200000H—-00200100H. Because this
is the DS (data segment) register, the data segment is located at these locations in the memory system. If data are
accessed outside of these boundaries, an interrupt occurs.

The local descriptor table (LDT) is accessed in the same manner as the global descriptor table (GDT). The
only difference in access is that the TI bit is cleared for a global access and set for a local access. Another differ-
ence exists if the local and global descriptor table registers are examined. The global descriptor table register
(GDTR) contains the base address of the global descriptor table and the limit. The local descriptor table register
(LDTR) contains only a selector, and it is 16-bits wide. The contents of the LDTR addresses a type 0010 system
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80386 Gate Descriptor
Offset (031-016) 6
: o Word count
Access rights byte — -] P b ;ype; 0jO O (ca—co) |*
Selector 2
Offset (015-00) 0

FIGURE 15-22 The gate descriptor for the 80386 microprocessor.

descriptor that contains the base address and limit of the LDT. This scheme allows one global table for all tasks;
but allows many local tables, one or more for each task, if necessary. Global descriptors describe memory for the
system, while local descriptors describe memory for applications or tasks.

Like the GDT, the interrupt descriptor table (IDT) is addressed by storing the base address and limit in the
interrupt descriptor table register (IDTR). The main difference between the GDT and IDT is that the IDT contains
only interrupt gates. The GDT and LDT contain segment and system descriptors, but never contain interrupt gates.

Figure 15-22 shows the gate descriptor, a special form of the system descriptor described earlier. (Refer to
Table 15-1 for the different gate descriptor types.) Notice that the gate descriptor contains a 32-bit offset address,
a word count, and a selector. The 32-bit offset address points to the location of the interrupt service procedure or
other procedure. The word count indicates how many words are transferred from the caller’s stack to the stack of
the procedure accessed by a call gate. This feature of transferring data from the caller’s stack is useful for
implementing high-level languages such as C/C++. Note that the word count field is not used with an interrupt
gate. The selector is used to indicate the location of the task state segment (TSS) in the GDT or LDT if it is a local
procedure.

When a gate is accessed, the contents of the selector are loaded into the task register (TR), causing a task
switch. The acceptance of the gate depends on the privilege and priority levels. A return instruction (RET) ends a
call gate procedure and a return from interrupt instruction (IRET) ends an interrupt gate procedure. Tasks are
usually accessed with a CALL or an INT instruction, where the call instruction addresses a call gate in the
descriptor table and the interrupt addresses an interrupt descriptor.

The difference between real mode interrupts and protected mode interrupts is that the interrupt vector table
is an IDT in the protected mode. The IDT still contains up to 256 interrupt levels, but each level is accessed
through an interrupt gate instead of an interrupt vector. Thus, interrupt type number 2 is located at IDT descriptor
number 2 at 16 locations above the base address of the IDT. This also means that the first 1K byte of memory no
longer contains interrupt vectors, as it did in the real mode. The IDT can be located at any location in the memory
system.

The Task State Segment (TSS)

The task state segment (TSS) descriptor contains information about the location, size, and privilege level of the
task state segment, just as any other descriptor. The difference is that the TSS described by the TSS descriptor does
not contains data or code. It contains the state of the task and linkage so tasks can be nested (one task can call a
second, which can call a third, and so forth). The TSS descriptor is addressed by the task register (TR). The con-
tents of the TR are changed by the LTR instruction. Whenever the protected mode program executes a far IMP or
CALL instruction, the contents of TR are also changed. The LTR instruction is used to initially access a task
during system initialization. After initialization, the CALL or JUMP instructions normally switch tasks. In most
cases, we use the CALL instruction to initiate a new task.

The TSS is illustrated in Figure 15-23. As can be seen, the TSS is quite a formidable section of memory,
containing many different types of information. The first word of the TSS is labeled back-link. This is the selector
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FIGURE 15-23 The task state segment (TSS) descriptor. (Courtesy of intel Corporation.)
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that is used, on a return (RET or IRET), to link back to the prior TSS by loading the back-link selector into the TR.
The following word must contain a 0. The second through the seventh doublewords contain the ESP and ESS
values for privilege levels 0-2. These are required in case the current task is interrupted so these privilege level
(PL) stacks can be addressed. The eighth word (offset 1CH) contains the contents of CR3, which stores the base
address of the prior state’s page directory register. This must be restored if paging is in effect. The contents of the
next 17 doublewords are loaded into the registers indicated. Whenever a task is accessed, the entire state of the ma-
chine (all of the registers) is stored in these memory locations and then reloaded from the same locations in the
new TSS. The last word (offset 66H) contains the I/O permission bit map base address.

The I/O permission bit map allows the TSS to block I/O operations to inhibited I/O port addresses via an /O
permission denial interrupt. The permission denial interrupt is type number 13, the general protection fault inter-
rupt. The I/O permission bit map base address is the offset address from the start of the TSS. This allows the same
permission map to be used by many TSSs.

Each I/O permission bit map is 64K bits long (8K bytes), beginning at the offset address indicated by the I/O
permission bit map base address. The first byte of the /O permission bit map contains /O permission for I/O ports
0000H-0007H. The rightmost bit contains the permission for port number 0000H. The leftmost bit contains the
permission for port number 0007H. This sequence continues for the very last port address (FFFFH) stored in the
leftmost bit of the last byte of the /O permission bit map. A logic 0 placed in an /O permission bit map bit enables
the /O port address, while a logic 1 inhibits or blocks the I/O port address. At present, only Windows NT uses the
/O permission scheme to disable 1/O ports dependent on the application or the user.

In review of the operation of a task switch, which requires only 17 s to execute, we list the following steps:

1. The gate contains the address of the procedure or location jumped to by the task switch. It also contains the se-
lector number of the TSS descriptor and the number of words transferred from the caller to the user stack area
for parameter passing,.

2. The selector is loaded into TR from the gate. (This step is accomplished by a CALL or JMP that refers to a

valid TSS descriptor.)

. The TR selects the TSS.

4. The current state is saved in the current TSS and the new TSS is accessed with the state of the new task (all
the registers) loaded into the microprocessor. The current state is saved at the TSS selector currently found in
the TR. Once the current state is saved, a new value (by the JMP or CALL) for the TSS selector is loaded into
TR and the new state is loaded from the new TSS.

The return from a task is accomplished by the following steps:

W

1. The current state of the microprocessor is saved in the current TSS.

2. The back-link selector is loaded to the TR to access the prior TSS so that the prior state of the machine can be
returned to and be restored to the microprocessor. The return for a called TSS is accomplished by the IRET in-
struction.

15-4 MOVING TO PROTECTED MODE

In order to change the operation of the 80386 from the real mode to the protected mode, several steps must be
followed. Real mode operation is accessed after a hardware reset or by changing the PE bit to a logic 0 in CRO.
Protected mode is accessed by placing a logic 1 into the PE bit of CRO; before this is done, however, some
other things must be initialized. The following steps accomplish the switch from the real mode to the protected
mode:
1. Initialize the interrupt descriptor table so that it contains valid interrupt gates for at least the first 32 inter-
rupt type numbers. The IDT may (and often does) contain up to 256 8-byte interrupt gates defining all 256
interrupt types.
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FIGURE 15-24 The memory map for Example 15-1.

2. Initialize the global descriptor table (GDT) so that it contains a null descriptor at descriptor 0, and valid de-
scriptors for at least one code, one stack, and one data segment.

3. Switch to protected mode by setting the PE bit in CRO.

4. Perform an intrasegment (near) JMP to flush the internal instruction queue and load the TR with the base TSS
descriptor.

5. Load all the data selectors (segment registers) with their initial selector values.

6. The 80386 is now operating in the protected mode, using the segment descriptors that are defined in GDT and
IDT.

Figure 15-24 shows the protected system memory map set up by following steps 1-5. The software for this
task is listed in Example 15-1. This system contains one data segment descriptor and one code segment descriptor
with each segment set to 4G bytes in length. This is the simplest protected mode system possible: loading all the
segment registers, except code, with the same data segment descriptor from the GDT. The privilege level is ini-
tialized to 00, the highest level. This system is most often used where one user has access to the microprocessor
and requires the entire memory space. This program is designed for use in a system that does not use DOS or shell
from Windows to DOS. Later in this section, we show how to go to protected mode in a DOS environment. (Please
note that the software in Example 151 is designed for a standalone system such as the 80386EX, and not for use
in the PC.)

EXAMPLE 15-1
' .MODEL SMALL
.386P
0000 .DATA
0000 0040 [ IDT1 DD 64 DUP (?) ;space for 32 interrupt vectors

00000000
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0100

0108
010a
010C
010E
010F
0110

0111
0113
0115
0117
0118
0119

011a
0i1c

0120
0122
0000

0028

0044
0048
004B
004E
0051
0054

0070
0072
0076
0079
007E
0083
0086

0000000000000

FFFF
0000
0000
9E
8F
00

FFFF
0000
0000
92
8F
00

00FF
00000000

0017
00000000

66| A3 011C

66| A3 0122
B9 0020

BF 0000 R
BE 0000

B8 0000

8E CO

89 05

66| C1 E8 10
89 45 06

C7 45 02 000
C7 45 04 8F0
83 c7 08

83 C6 04

]
;iGlobal descriptor table
DESCO DQ 0
000

;code segment descriptor

DESC1 DW

OFFFFH
DW 0
DwW 0
DB 9EH
DB 8FH
DB 0

;data segment descriptor

DESC2

DW OFFFFH
DwW 0

DW 0

DB 92H
DB 8FH
DB 0

H
;IDT table data

IDT DwW OFFH
IDTA DD 0

’

;GDT table data

GDT Dw 17H

GDTA DD 0
.CODE
MAK32 MACRO SEG,OFF

MOV EAX, 0
MOV EBX, 0
MOV AX, SEG
MOV BX, OFF
SHL EAX, 4
ADD EAX, EBX

ENDM
. STARTUP

MAK32 DS,OFFSET IDT1
R MoV IDTA, EAX

MAK32 DS,OFFSET DESCO
R MOV GDTA, EAX

MoV CX, 32
MOV DI,OFFSET IDT1

;iclear null descriptor

;limit = 4G
;base address = 00000000H

;code segment
;G =1

;limit = 4G

;base address 00000000H

;data segment
iG =1

;set limit to FFH

;set limit to 17H

; ;make a seg+off a linear address

;save IDT address

;save GDT address

;setup first 32 interrupts

MoV SI,0
MOV AX, 0
MOV ES, AX
.REPEAT
MAK32 ES:[SI+2],ES:[SI]

MOV [DI],AX
SHR EAX, 16
MOV [DI+6],AX
8 MoV WORD PTR [DI+2)

0 MOV WORD PTR [DI+4]
ADD DI,8
ADD SI,4

.UNTILCXZ

.8
,8F00H

485
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008B
0090

0095
0098
009C

009F

00Al
00Al
00A4
00A6
00A8
00AA
00AC
00AE

OF 01 1E 011A R
OF 01 16 0120 R

OF 20 CO

66| 83 C8 01

OF 22 CO

EB 00

B8 0010
8E D8
8E CO
8E DO
8E E8
8E EO

START:

66| BC FFFFF000

in the IDT.

2. Initialize the global descriptor table so that it contains at least two task state segment (TSS) descriptors, and

LIDT
LGDT

MOV
OR
MOV

MOV
MOV
MOV
MOV
MOV
MoV
MOV

FWORD PTR IDT
FWORD PTR GDT

EAX,CRO
EAX, 1
CRO, EAX

START

AX,10H

DS, AX

ES, AX

SS,AX

GS,AX

FS,AX

ESP, OFFFFF000H

;now in protected mode.

END

;load IDT
;load GDT

;set PE

;near jump

;set selector 2

In more complex systems, the steps required to initialize the system in the protected mode are more in-
volved. For complex systems that are often multiuser systems, the registers are loaded by using the task state seg-
ment (TSS). The steps required to place the 80386 into protected mode operation for a more complex system using
a task switch follow:

1. Initialize the interrupt descriptor table so that it refers to valid interrupt descriptors with at least 32 descriptors

the initial code and data segments required for the initial task.

3. Initialize the task register (TR) so that it points to a valid TSS; when the initial task switch occurs and accesses

the new TSS, the current registers are stored in the initial TSS.

4. Switch to protected mode by using an intrasegment (near) jump to flush the internal instruction queue. Load

the TR with the current TSS selector.

b

Load the TR with a far jump instruction to access the new TSS and save the current state.

6. The 80386 is now operating in the protected mode under control of the first task.

cess the system in a multiuser environment.

EXAMPLE 15-2
0000

0008

0000 0000
0002 0000
0004 00

0005 00

0006 00

0007 00

0068

.MODEL
.386P
.STACK
.DATA
DESC

LIM_L
BAS_L
BAS_M
ACCESS
LIM M
BAS_H

DESC

TSS

SMALL

800H

STRUC

DW
DwW
DB
DB
DB
DB

[eNeNeNeNoNe]

ENDS

STRUC

Example 15-2 illustrates the software required to initialize the system and switch to protected mode by
using a task switch. The initial system task operates at the highest level of protection (00) and controls the entire
operating environment for the 80386. In many cases, it is used to boot (load) software that allows many users to ac-

;define descriptor structure

;define TSS structure
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0000
0002
0004
0008
000A
0ooc
0010
0012
0014
0018
001a
001cC
0020
0024
0028
002c
0030
0034
0038
003C
0040
0044
0048
004A
004cC
004E
0050
0052
0054
0056
0058
005A
005¢C
00SE
0060
0062
0064
0066

0000

0068

0000
0000

00000000

0000
0000

00000000

0000
0000

00000000

0000
0000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0020
0000
0018
0000
0020
0000
0020
0000
0020
0000
0020
0000
0000
0000
0000
0000

0000

0000

00000000

0000 0000 00000000
0000 0000 00000000
0000 0000 00000000

00000000
00000000
00000000
00000000 00000000
00000000

0020
0000
0020
0000
0000
0000
0000

0000
0020
0000
0020
0000

0000

00000000

0000
0000
0000

0000
0000
0000

BACK_L

ESPO
Ss0

ESP1
ss1

ESP2
Ss2

CCR3
EIP
TFALGS
EEAX
EECX
EEDX
EEBX
EESP
EEBP
EESI
EEDI
EES

ECs

ESS

EDS

EFS

EGS

ELDT

BITM
TSS

TSS1

00000000
00000000
00000000

00000000
0018
0000
0020
0000
0000

TSS2

00000000
00000000
00000000

00000000 00000000

DW
DW
DD
Dw
DwW
DD
Dw
DW
DD
DwW
DwW
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DW
Dw
DW
DW
DW
DwW
Dw
DW
Dw
DwW
DW
DwW
Dw
DW
Dw
DW

ENDS

TSS

TSS

(= ealeNeNeNe e NoNeNeNo

ONOFHONODOOOODODOOOO
(= o] =
o m o

20H

20H

20H

o

oo oo

<>

<>

;task state 1

;jtask state 2
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EXAMPLE 15-3

0000
0000
0004
0008
00o0cC
0010
0012

0026

003B

0056

007B

0098

00B4

00D5
00D8

00000000
00000000
00000000
00000000
0000

0D
72
65
72

0A
61
72
6F

oA
6D
20
72
0A
20
70
6E

73
79
2E

;A program that displays the contents of any area of memory
;including extended memory.

;***command line syntax***

;EDUMP XXXX,YYYY where XXXX is the start address and YYYY is
;the end address.

i

i

Note:

ENTRY
EXIT
FIRST
LAST1
MSIZE
ERR1

ERR2

ERR3

ERR4

ERRS

ERR6

ERR7

CRLF
MES1

this program must be executed from WINDOWS.

.MODEL SMALL

.386

.STACK 1024 ;stack area of 1,024 bytes
.DATA

DD ? ;DPMI entry point

DD ? ;DPMI exit point

DD ? ;first address

DD ? ;last address

DW ? ;memory needed for DPMI

DB 13,10,10, ' Parameter error.$’

DB 13,10,10, 'DPMI not present.$’

DB 13,10,10, 'Not enough real memory.$’

DB 13,10,10, ‘Could not move to protected mode.$’

DB 13,10,10, ‘Cannot allocate selector.$’

DB 13,10,10, ‘Cannot use base address.$’

DB 13,10,10, ‘Cannot allocate 64K to limit.$’

DB 13,10,'$’
DB 'Press any key...$'
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00E9
00E9
00ED
00F1
00F5
00F9
00FD
0101
0105
0109
010B
010D
010F
0111
0113
0115
0117
0119
0000

0010
0012
0014
0016
0018
001B
001C
001E
0020
0022
0025
0027
0029
002C
002E
0031
0031
0034
0036
0038
003B
003D
0040
0040
0043
0048
004A
004E
0050
0052
0054
0056
0059
005B
005D
005D
005F
0062
0066
0068

2E

24

00E9

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0000
0000
0000
0000
0000
0000
0000
0000
0000

E8
72
B4
BA
CD
E9

B8
83
74
8B
B4
CD
73
B4
BA
CD
EB

8E
B8
FF
73
B4

co
DB
D8
c4
E8 04

0000

3E 0010 R 00
F6

1E 0010 R

co
0000
1E 0000 R

09

/

;register array storage for DPMI function 0300H

ARRAY
REDI
RESI
REBP

REBX
REDX
RECX
REAX
RFLAG
RES
RDS
RFS
RGS
RIP
RCS
RSP
RSS

MAINI1:

MAIN2:

MAIN3:

EQU
DD
DD
DD
DD
DD
DD
DD
DD
Dw
DwW
DW
Dw
Dw
DwW
Dw
DW
Dw

THIS BYTE

[eNeNeNoNoNoNoNoNeNoNeNeNe Neo Ne No Xe

.CODE
.STARTUP

MOV
MOV
SUB
MOV
SHR
INC
ADD
MOV
INT
CALL
JNC
MOV
MOV
INT

CALL
Jc
MOV
MOV
INT

MOV
CMP
JE

MOV
MOV
INT

MOV
MOV
INT

MOV
MOV
CALL

MOV

AX,ES
BX, DS
BX, AX
AX,SP
AX, 4
AX
BX,AX
AH, 4AH
21H
GETDA
MAIN1
AH, 9
DX, OFFSET ERR1
21H
MAINE

ISDPMI

MAIN2

AH, S

DX, OFFSET ERR2
21H

MAINE

AX, 0
MSIZE, 0
MAINZ2
BX,MSIZE
AH, 48H
21H
MAIN3
AH, 9

DX, OFFSET ERR3
21H
MAINE

ES,AX
AX,0
DS:ENTRY
MAIN4
AH, 9

; EDI
;ESI

; EBP
;reserved
; EBX

; EDX

; ECX

; EAX
;flags
;ES
;DS
;FS
;GS
;IP
;CS

; SP
;8S

;find size of program and data

;find stack size

;BX = length in paragraphs
;modify memory allocation
;get command line information
;if parameters are good
;parameter error

;exit to DOS

;is DPMI loaded?

;if DPMI present

;display DPMI not present
;exit to DOS

;indicate 0 memory needed

;if DPMI needs no memory
;get amount

;allocate memory for DPMI

;if not enough real memory
;exit to DOS
;16-bit application

iswitch to protected mode

;if switch failed
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006A
006D
006F

0071
0071
0074
0077
0079
007B
007D
007F
0082
0086
008A
008cC
008E
0091
0094
0097
0099
009B
009E
00Al
00Al
00A4
ooa7
00A8
00AC
00B1
00B3
00B8
00BA
00BA
00BD
00BF
00C1
00C3
00C3
00Cé
00C9
00CB
00CB
00CE
00D1
00D3
00D3
00D6
00D9
00DB

OO0DF

00DF
00E2
00E4

;exit to DOS

;get local selector
;only one is needed

;if error
;save selector

;load ES with selector
;set base address

;if error

;set limit to 64K

;if error

;load line count

;load offset

;display address, if needed
;display data

;point to next data

;test for end

;if done

;release descriptor

;exit to DOS

;display cannot allocate selector
;exit to DOS

;display cannot use base address
;release descriptor

;display cannot allocate 64K limit
;release descriptor

;The ISDPMI procedure tests for the presence of DPMI.

;get DPMI status
;DOS multiplex

BA 0056 R MOV DX,OFFSET ERR4
Cbh 21 INT 21H
EB 6A JMP MAINE
; PROTECTED MODE
MAIN4:
B8 0000 MOV AX,0000H
B9 0001 MOV CX,1
CD 31 INT 31H
72 48 Jc MAIN7
8B D8 MOV BX,AX
8E CO MOV ES,AX
B8 0007 MOV AX,0007H
8B OE 000A R MOV CX,WORD PTR FIRST+2
8B 16 0008 R MOV DX,WORD PTR FIRST
CDh 31 INT 31H
72 3D Jc MAINS
B8 0008 MOV AX,0008H
B9 0000 MOV CX,0
BA FFFF MOV DX, OFFFFH
Ch 31 INT 31H
72 38 JC  MAIN9
B9 0018 MOV CX,24
BE 0000 MOV SI,0
MAINS:
E8 00F4 CALL DADDR
E8 0OOCE CALL DDATA
46 INC SI
66| Al 0008 R MOV EAX,FIRST
66| 3B 06 000C R CMP EAX,LAST1
74 07 JE MAING6
66| FF 06 0008 R INC FIRST
EB E7 JMP MAINS
MAING:
B8 0001 MOV AX,0001H
8C C3 MOV BX,ES
CDh 31 INT 31H
EB 18 JMP MAINE
MAIN7:
BA 007B R MOV DX,OFFSET ERRS5
E8 0096 CALL DISPS
EB 10 JMP MAINE
MAINS:
BA 0098 R MOV DX,OFFSET ERR6
E8 008E CALL DISPS
EB E7 JMP MAIN6
MAING:
BA 00B4 R MOV DX, OFFSET ERR7
E8 0086 CALL DISPS
EB DF JMP MAIN6
MAINE:
.EXIT
;***exit parameters***
;ecarry = 1; if DPMI is present
;carry = 0; if DPMI is not present
ISDPMI PROC NEAR
B8 1687 MOV AX,1687H
CD 2F INT 2FH
0B CO OR AX, AX
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00E6 75 0D JNZ ISDPMI1 ;1f no DPMI
00E8 89 36 0010 R MOV MSIZE, SI ;save amount of memory needed
00EC 89 3E 0000 R MOV WORD PTR ENTRY,DI
00F0 8C 06 0002 R MOV WORD PTR ENTRY+2,ES
00F4 F9 STC
00F5S ISDPMI1:
00F5 C3 RET
00F6 ISDPMI ENDP
;The GETDA procedure retrieves the command line parameters
; for memory display in hexadecimal.
;FIRST = the first address from the command line
;LAST1 = the last address from the command line
;***return parameters***
;ecarry = 1; if error
;ecarry = 0; for no error
00F6 GETDA PROC NEAR
00F6 1E PUSH DS
00F7 06 PUSH ES
00F8 1F POP DS
00F9 07 POP ES ;exchange ES with DS
00FA BE 0081 MOV SI,81H ;address command line
00FD GETDAl:
00FD AC LODSB ;skip spaces
00FE 3C 20 CMP AL,’ '
0100 74 FB JE GETDAl ;i1f space
0102 3C 0D CMP AL,13
0104 74 1E JE GETDA3 ;1f enter = error
0106 4E DEC SI ;adjust SI
0107 GETDA2: '
0107 E8 0020 CALL GETNU ;get first number
010A 3C 2C CMP AL,’,’
010C 75 16 JNE GETDA3 ;if no comma = error
010E 66| 26: 89 16 0008 R MOV ES:FIRST,EDX
0114 E8 0013 CALL GETNU ;get second number
0117 3C OD CMP AL,13
0119 75 09 JNE GETDA3 ;if exror
011B 66| 26: 89 16 000C R MOV ES:LAST1,EDX
0121 F8 CLC ;indicate no error
0122 EB 01 JMP GETDA4 ;return no error
0124 GETDA3:
0124 F9 STC ;indicate error
0125 GETDA4:
0125 1E PUSH DS ;exchange ES with DS
0126 06 PUSH ES
0127 1F POP DS
0128 07 POP ES
0129 cC3 RET
012a GETDA ENDP
;The GETNU procedure extracts a number from the command line
;and returns with it in EDX and last command line character in
;AL as a delimiter.
012Aa GETNU PROC NEAR
012A 66| BA 00000000 MOV EDX, 0 iclear result
0130 GETNU1:
0130 AC LODSB ;get digit from command line
.IF AL >= ‘a’ && AL <= ‘'z’ :
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0139

013B
013D

0143

0145
0147
0149
014D
014F
0151
0151
0154

0155

0155

0155
0156
0158
015A
015D
015E

015F

015F

015F
0166
0169
016B
016D
016F
0172
0174
0174

0175

0175

0175
0178
017B

2C 20

2C 30
72 12

2C 07

3C OF
77 08
66| C1 E2 04
02 DO
EB DF

8A 44 FF
C3

66| 81 E2 0000FFFF

67& 8A 02
3C 24

74 07

66| 42

E8 FFE3
EB EB

Cc3

26: 8A 04
CO E8 04
E8 000C

SUB AL,20H ;make uppercase
.ENDIF
SUB AL,’0’ ;convert from ASCII
JB GETNU2 ;if not a number
.IF AL > 9 ;convert A-F from ASCII
SUB AL,7
.ENDIF
CMP AL,OFH
JA GETNU2 ;1f not O-F
SHL EDX, 4
ADD DL,AL ;add digit to EDX
JMP GETNU1 ;get next digit
GETNU2 :
MOV AL, [SI-1] ;get delimiter
RET
ENDP

GETNU
;The DISPC procedure displays the ASCII character found
;in register AL.

*R*rygeghr*
; INT21H
DISPC PROC NEAR
PUSH DX
MOV DL, AL
MOV AH,6
CALL INT21H
POP DX

RET

;do real INT 21H

DISPC ENDP

;The DISPS procedure displays a character string from
;protected mode addressed by DS:EDX.

;***uses***

;DISPC

DISPS PROC NEAR

AND EDX, OFFFFH
MOV AL, [EDX] ;get character
CMP AL, 'S$’ ;test for end
JE DISP1 ;if end
INC EDX ;address next character
CALL DISPC ;display character
JMP DISPS ;repeat until $
DISPl:
RET
ENDP

DISPS
;i The DDATA procedure displays a byte of data at the location
;addressed by ES:SI. The byte is followed by one space.
;t**uses***

;DIP and DISPC

DDATA PROC NEAR

MOV AL,ES: [STI] iget byte
SHR AL, 4
CALL DIP ;display first digit
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017E
0181
0184
0186
0189

018Aa

018a

01s8a
018C

0192

0194
0197

0198

0198

0198
019C
019E
01A0
01A3
01a6
01a7
01A9
01AC
01AF
01AF
01B1
01B3
01B6
01B8
01BB
01BE
01c1
01lc1
01c2
01C5
01ca
oica
01CE
01D0
01D3
01D5
01D6
01D8
01DB
01DD

26:

E8
BO
E8
Cc3

24
04

04

E8
c3

66| Al 0008 R

8A 04
0006
20
FFCC

OF
30

07

FFBE

MOV AL,ES:[SI]
CALL DIP

MOV AL, '
CALL DISPC

RET

DDATA ENDP

;The DIP procedure displays the right nibble found in AL as a

;hexadecimal digit.
;***uses***
; DISPC

DIP PROC NEAR
AND AL, OFH

ADD AL, 30H
.IF AL > 39H

ADD AL,7
.ENDIF
CALL DISPC
RET
DIP ENDP

’

;The DADDR procedure displays the hexadecimal address found

;get byte

;display second digit

;display space

;get right nibble
;convert to ASCII

;if A-F

;display digit

;in DS:FIRST if it is a paragraph boundary.

;***uses***
;DIP, DISPS, DISPC, and INT21H

DADDR PROC NEAR

MOV  EAX,FIRST

A8 OF TEST AL, OFH
75 40 JNZ DADDR4
BA 00D5 R MOV DX,OFFSET CRLF
E8 FFB9 CALL DISPS
49 DEC CX
75 18 JNZ DADDR2
BA 00D8 R MOV DX,OFFSET MES1
E8 FFBO CALL DISPS
DADDR1:
B4 06 MOV AH,6
B2 FF MOV DL, OFFH
E8 002B CALL INT21H
74 F7 JZ  DADDR1
BA 00D5 R MOV DX,OFFSET CRLF
E8 FFAl CALL DISPS
B9 0018 MOV CX,24
DADDR2 :
51 PUSH CX
B9 0008 MOV CX,8
66| 8B 16 0008 R MOV EDX, FIRST
DADDR3 :
66| C1 c2 04 ROL EDX, 4
8a C2 MOV AL,DL
E8 FFB7 CALL DIP
E2 FS LOOP DADDR3
59 POP CX
BO 3a MOV AL, ‘:’
E8 FF7A CALL DISPC
BO 20 MOV AL,’ '
E8 FF75 CALL DISPC

;get address

;test for XXXXXXXO0
;if not, don’t display address

;display CR and LF
;decrement line count
;if not end of page

;if end of page

;display press any key
;get any key, no echo

;do real INT 21H
;if nothing typed

;display CRLF

;reset line count

;save line count
;load digit count

;get address

;display digit
;repeat 8 times

;retrieve line count

;display colon

;display space
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01E0 DADDR4 :
01E0 C3 RET
01E1 DADDR ENDP

;The INT21H procedure gains access to the real mode DOS
;INT 21H instruction with the parameters intact.

01El INT21H PROC NEAR

01E1 66| a3 0105 R MOV REAX, EAX ;save registers
01E5 66| 89 1E O00OF9 R MOV REBX, EBX

0l1EA 66| 89 OE 0101 R MOV RECX, ECX

01EF 66| 89 16 00FD R MOV REDX, EDX

01F4 66| 89 36 00ED R MOV RESI,ESI

01F9 66| 89 3E 00E9 R MOV REDI,EDI

O1FE 66| 89 2E 00F1 R MOV REBP, EBP

0203 9cC PUSHF

0204 58 POP AX

0205 A3 0109 R MOV RFLAG, AX

0208 06 PUSH ES ;do DOS interrupt
0209 B8 0300 MOV AX,0300H

020C BB 0021 MOV BX,21H

020F B9 0000 MOV CX,0

0212 1E PUSH DS

0213 07 POP ES

0214 BF 00E9 R MOV DI,OFFSET ARRAY

0217 CD 31 INT 31H

0219 07 POP ES

021A Al 0109 R MOV AX,RFLAG ;restore registers
021D 50 PUSH AX

021E 9D POPF

021F 66| 8B 3E 00E9 R MOV EDI, REDI

0224 66| 8B 36 00ED R MOV ESI,RESI

0229 66| 8B 2E OOF1 R MOV EBP, REBP

022E 66| Al 0105 R MOV EAX, REAX

0232 66| 8B 1E 00F9 R MOV EBX,REBX
0237 66| 8B OE 0101 R MOV ECX, RECX
023C 66| 8B 16 00FD R MOV EDX, REDX
0241 C3 RET
0242 INT21H ENDP

END

You might notice that the DOS INT 21H function call must be treated differently when operating in the pro-
tected mode. The procedure that calls a DOS INT 21H is at the end of Example 15-3. Because this is extremely
long and time consuming, we have tended to move away from using the DOS interrupts from a Windows applica-
tion. The best way to develop software for Windows is through the use of C/C++ with the inclusion of assembly
language procedures for arduous tasks.

15-5 VIRTUAL 8086 MODE

One special mode of operation not discussed thus far is the virtual 8086 mode. This special mode is designed so that
multiple 8086 real-mode software applications can execute at one time. The PC operates in this mode for DOS ap-
plications. Figure 15-25 illustrates two 8086 applications mapped into the 80386 using the virtual mode. If the op-
erating system allows multiple applications to execute, it is usually done through a technique called time-slicing.
The operating system allocates a set amount of time to each task. For example, if three tasks are executing, the
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Memory Map

FFFFFFFF
001FFFFF

TASK 2

MSDOS
00100000
000FFFFF

TASK 1

MSDOS
00000000

FIGURE 15-25 Two tasks resident to an 80386 operated
in the virtual 8086 mode.

operating’system can allocate 1 ms to each task. This means that after each millisecond, a task switch occurs
to the next task. In this manner, all tasks receive a portion of the microprocessor’s execution time, resulting
in a system that appears to execute more than one task at a time. The task times can be adjusted to give any
task any percentage of the microprocessor execution time.

A system that can use this technique is a print spooler. The print spooler can function in one DOS par-
tition and be accessed 10 percent of the time. This allows the system to print using the print spooler, but it
doesn’t detract for the system because it uses only 10 percent of the system time.

The main difference between 80386 protected mode operation and the virtual 8086 mode is the way
the segment registers are interpreted by the microprocessor. In the virtual 8086 mode, the segment registers
are used as they are in the real mode: as a segment address and an offset address capable of accessing a 1M-
byte memory space from location 00000H-FFFFFH. Access to many virtual 8086 mode systems is made
possible by the paging unit that is explained in the next section. Through paging, the program still accesses
memory below the 1M-byte boundary, yet the microprocessor can access a physical memory space at any
location in the 4G-byte range of the memory system.

Virtual 8086 mode is entered by changing the VM bit in the EFLAG register to a logic 1. This mode
is entered via an IRET instruction if the privilege level is 00. This bit cannot be set in any other manner. An
attempt to access a memory address above the 1M-byte boundary will cause a type-13 interrupt to occur.

The virtual 8086 mode can be used to share one microprocessor with many users by partitioning the
memory so that each user has its own DOS partition. User 1 can be allocated memory locations
00100000H-01FFFFFH, user 2 can be allocated locations 0020000H-02FFFFFH, and so forth. The system
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software located at memory locations 00000000H-000FFFFFH can then share the microprocessor between
users by switching from one to another to execute software. In this manner, one microprocessor is shared by
many users.

15-6 THE MEMORY PAGING MECHANISM

The paging mechanism allows any linear (logical) address, as it is generated by a program, to be placed into any
physical memory page, as generated by the paging mechanism. A linear memory page is a page that is addressed
with a selector and an offset in either the real or protected mode. A physical memory page is a page that exists at
some actual physical memory location. For example, linear memory location 20000H could be mapped into
physical memory location 30000H, or any other location, with the paging unit. This means that an instruction that
accesses location 20000H actually accesses location 30000H.

Each 80386 memory page is 4K bytes long. Paging allows the system software to be placed at any physical
address with the paging mechanism. Three components are used in page address translation: the page directory,
the page table, and the actual physical memory page. Note that EEM386.EXE, the extended memory manager,
uses the paging mechanism to simulate expanded memory in extended memory and to generate upper memory
blocks between system ROMs.

The Page Directory

The page directory contains the location of up to 1024 page translation tables. Each page translation table
translates a logic address into a physical address. The page directory is stored in the memory and accessed by the
page descriptor address register (CR3) (see Figure 15-14). Control register CR3 holds the base address of the page
directory, which starts at any 4K-byte boundary in the memory system. The MOV CR3,reg instruction is used to
initialize CR3 for paging. In a virtual 8086 mode system, each 8086 DOS partition would have its own page
directory.

The page directory contains up to 1024 entries, which are each four bytes long. The page directory itself
occupies one 4K-byte memory page. Each entry in the page directory (see Figure 15-26) translates the leftmost 10
bits of the memory address. This 10-bit portion of the linear address is used to locate different page tables for
different page table entries. The page table address (A32-A12), stored in a page directory entry, accesses a 4K-
byte long page translation table. To completely translate any linear address into any physical address requires
1024 page tables that are each 4K bytes long, plus the page table directory, which is also 4K bytes long. This
translation scheme requires up to 4M plus 4K bytes of memory for a full address translation. Only the largest
operating systems support this size address translation. Many commonly found operating systems translate only
the first 16M bytes of the memory system if paging is enabled. This includes programs such as Windows. This
translation requires four entries in the page directory (16 bytes) and four complete page tables (16K bytes).

The page table directory entry control bits, as illustrated in Figure 15-26, each perform the following
functions:

31 1211 10 9 87 654 3 2 1 0

]

Page Table Address ' oo
(A31-A12) :Reserved: 0 : 0'D : A

1

o 1 1

[} ] [} [}
0' 0 'W/SIRW!IP
o ' '
L

[}
1 A A 1

FIGURE 15-26 The page table directory entry.
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D Dirty is undefined for page table directory entries by the 80386 microprocessor and is
provided for use by the operating system.

A Accessed is set to a logic 1 whenever the microprocessor accesses the page directory
entry.

R/W and Bead/wrlte a.nd user/supervisor are both used TABLE 15-2 Protection for level 3
in the protection scheme, as

uss listed in Table 15-2. Both bits combine to using U/S and R/W.

develop paging priority level pro- tection for
level 3, the lowest user level.

uss RW Access Level 3

P Present, if a logic 1, indicates that the entry 0 0 None
can be used in address translation. f P=0,the O 1 None

entry cannot be used for translation. A not 1 0 Read-only

1 1 Read/write

present entry can be used for other purposes,
such as indicating that the page is currently
stored on the disk. If P = 0, the remaining bits
of the entry can be used to indicate the location
of the page on the disk memory system.

The Page Table

The page table contains 1024 physical page addresses, accessed to translate a linear address into.a physical ad-
dress. Each page table translates a 4M section of the linear memory into 4M of physical memory. The format
for the page table entry is the same as for the page directory entry (refer to Figure 15-26). The main difference
is that the page directory entry contains the physical address of a page table, while the page table entry con-
tains the physical address of a 4K-byte physical page of memory. The other difference is the D (dirty bit),
which has no function in the page directory entry, but indicates that a page has been written to in a page table
entry.

Figure 15-27 illustrates the paging mechanism in the 80386 microprocessor. Here, the linear address
00CO3FFCH, as generated by a program, is converted to physical address XXXXXFFCH, as translated by the
paging mechanism. (Note: XXXXX is any 4K-byte physical page address.) The paging mechanism functions in
the following manner:

1. The 4K-byte long page directory is stored as the physical address located by CR3. This address is often called
the root address. One page directory exists in a system at a time. In the 8086 virtual mode, each task has its
own page directory, allowing different areas of physical memory to be assigned to different 8086 virtual tasks.

2. The upper 10 bits of the linear address (bits 31-22), as determined by the descriptors described earlier in this
chapter or by a real address, are applied to the paging mechanism to select an entry in the page directory. This
maps the page directory entry to the leftmost 10 bits of the linear address.

3. The page table is addressed by the entry stored in the page directory. This allows up to 4K page tables in a
fully-populated and translated system.

4. An entry in the page table is addressed by the next 10 bits of the linear address (bits 21-12).

. The page table entry contains the actual physical address of the 4K-byte memory page.

6. The rightmost 12 bits of the linear address (bits 11-0) select a location in the memory page.

W

The paging mechanism allows the physical memory to be assigned to any linear address through the paging
mechanism. For example, suppose that linear address 20000000H is selected by a program, but this memory
location does not exist in the physical memory system. The 4K-byte linear page is referenced as locations
20000000H-20000FFFH by the program. Because this section of physical memory does not exist, the operating
system might assign an existing physical memory page such as 12000000H-12000FFFH to this linear address
range.
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Linear address
31 2221 121 0
[ 0000000011 ;| 0000000011 : 111111111100}
4K byte memory page
XXXXXFFF
XXXXXFFE
XXXXXFFD
XXXXXFFC
Page table (number 3) XXXXXFFB
/~/ﬂ
e
. - XXXXX006
Page table directory _

3FD| 00FFDO0C - 0OFFDFFF XOOXXXO05
3FF[ FFC00000 - FFFFFFFF 3FC[ O0OFFC000 - 00FFCFFF OOOKX004
::E El:ooooo - il;?:::;: 3FB{ OOFFB000 - 00OFFBFFF XXXXX003
00000 - - XXXXX002
3FC|  FF000000 - FF3FFFFF 7| 00C07000 - 00CO7FFF XOOX00T
3F8| FEC00000 - FEFFFFFF 6] 00C06000 - 00COEFFF XXXXX000

e 5] 00C05000 - 00COSFFF

01C00000 - 01FFFFFF \ 4| 00C04000 - 00CO4FFF

01800000 - 01BFFFFF + 3| 00C03000 - 00CO3FFF |
01400000 - 017FFFFF 2 00C02000 - 00CO2FFF
01000000 - 013FFFFF 1 00C01000 - 00CO1FFF
0

00C00000 ~ OOFFFFFF
00800000 - 0OBFFFFF
00400000 - 007FFFFF
00000000 - 003FFFFF

00C00000 ~ 00COOFFF

CR3
r Root address

<
O = N W &GO

Note: 1. The address ranges illustrated in the page directory and page table
represent the linear address ranges selected and not the contents of these tables.

2. The addresses (XXXXX) listed in the memory page are selected by the page table entry.

FIGURE 15-27 The translation of linear address 00CO3FFCH to physical memory address XXXXXFFCH.
The value of XXXXX is determined by the page table entry (not shown here).

In the address translation process, the leftmost 10 bits of the linear address select page directory entry 200H
located at offset address 800H in the page directory. This page directory entry contains the address of the page
table for linear addresses 20000000H—203FFFFFH. Linear address bits (21-12) select an entry in this page table
that corresponds to a 4K-byte memory page. For linear addresses 2000000H-20000FFFH, the first entry (entry 0)
in the page table is selected. This first entry contains the physical address of the actual memory page, or
12000000H-12000FFFH in this example.

Take, for example, a typical DOS-based computer system. The memory map for the system appears in
Figure 15-28. Note from the map that there are unused areas of memory, which can be paged to a different
location, giving a DOS real mode application program more memory. The normal DOS memory system begins at
location 00000H and extends to location 9FFFFH, which is 640K bytes of memory. Above location 9FFFFH, we
find sections devoted to video cards, disk cards, and the system BIOS ROM. In this example, an area of memory
just above 9FFFFH is unused (AOOOO-AFFFFH). This section of the memory could be used by DOS, so that the
total application-memory area is 704K instead of 640K. Be careful when using AOQ000H- AFFFFH for additional
RAM because the video card uses this area for bit-mapped graphics in mode 12H and 13H.

This section of memory can be used by mapping it into extended memory at locations 102000H-1 1FFFFH.
Software to accomplish this translation and initialize the page table directory, and page tables required to set up
memory are illustrated in Example 15-4. Note that this procedure initializes the page table directory, a page table, and
loads CR3. It does not switch to protected mode and it does enable paging. Note that paging functions in real mode
memory operation.



